Characteristics of a 2-D Magneto-Optical-Trap1 CHRISTIANE EBONGUE, ERIC MAGNAN, PABLO SOLANO, JEFFREY GROVER, LUIS OROZCO, Univ of Maryland-College Park — The 2D Magneto-Optical-Trap (MOT) produces a cold collimated Rubidium (87Rb) atomic beam in a compact set up. The 2D MOT is in a stainless steel vacuum system, and requires a gradient of magnetic field as well as two different laser frequencies, one for cooling through a cycling transition and one for re-pumping atoms that fall into the wrong state. The vacuum system has four vacuum windows to allow retroflection of the cooling beams, a dispenser that generates a vapor of Rb atoms. The lowest pressure attained is about 10^{-10} mbar. We have produced the quadrupole field using first small permanent rare earth magnets, and then coils. Finally, the red-detuned cooling beam has a frequency offset a few MHz from transition frequency of 87Rb, $5\ ^2S_{1/2} \ F=2 \rightarrow 5\ ^2P_{3/2} \ F=3$) with a circular polarization. The optics arrangement is compact using fiber optics. We present here advances and results of the 2D MOT.

1This work is supported by the NSF through the PSC@JQI.