Abstract Submitted for the MAS15 Meeting of The American Physical Society

Geometric Magnetic Frustration in Li₃Mg₂OsO₆ Studied with Muon Spin Relaxation¹ J. P. CARLO, Villanova University, S. DERAKSHAN, California State University - Long Beach, J. E. GREEDAN, McMaster University — Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A₅BO₆, in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of Li₃Mg₂OsO₆ using muon spin relaxation (μSR) , a highly sensitive local probe of magnetism. Previous studies of this family included Li₅OsO₆, which exhibits AF order below 50K with minimal evidence for frustration, and Li₄MgReO₆, which exhibits glassy magnetism. Li₃Mg₂RuO₆, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, $\text{Li}_3\text{Mg}_2\text{OsO}_6$ (5d³ vs. 4d³) exhibits very different behavior, revealed by μSR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration.

¹JPC acknowledges financial support from the Research Corporation for Science Advancement

Jeremy Carlo Villanova University

Date submitted: 02 Oct 2015 Electronic form version 1.4