Abstract Submitted for the MAS16 Meeting of The American Physical Society

Hyperfine quenching rates of $nsnp^{3}P_{0} - ns^{2} {}^{1}S_{0}$ transition in 25 Mg, ⁸⁷Sr and 113 Cd ZUHRIANDA ZUHRIANDA, M.S. SAFRONOVA, Dept. of Physics and Astronomy, University of Delaware — Determining the $nsnp^{3}P_{0}$ state decay rate is important for the development of atmic clock based on $nsnp^{3}P_{0} - ns^{2} {}^{1}S_{0}$ transition. In the fermionic isotope there exist a decay channel for the $nsnp^{3}P_{0} - ns^{2} {}^{1}S_{0}$ transition through the nuclear hyperfine interaction which can contributes to the total $nsnp^{3}P_{0}$ lifetime. We computed the hyperfine quenching rates of the $nsnp^{3}P_{0} - ns^{2} {}^{1}S_{0}$ transition in 25 Mg, 87 Sr and 113 Cd. The calculations are carried out using the ab-initio CI-all order package. Our final results of the hyperfine quenching rates are 0.43 mHz for 25 Mg, 9.7 mHz for 87 Sr and 77 mHz for 113 Cd.

Zuhrianda Zuhrianda Dept. of Physics and Astronomy, University of Delaware

Date submitted: 13 Oct 2016

Electronic form version 1.4