MAS17-2017-000033

Abstract for an Invited Paper for the MAS17 Meeting of the American Physical Society

THz- and infrared ellipsometry studies of plasmonic modes in complex oxide heterostructures CHRISTIAN BERNHARD, Department of Physics, University of Fribourg

I will present THz- and infrared ellipsometry studies of complex oxide heterostructures with mobile charge carriers that are spatially confined. The first example concerns the two-dimensional electron gas in LaAlO₃/SrTiO₃ and related materials for which the sheet carrier density, the depth profile and the mobility of the charge carriers are obtained from the analysis of a so-called Berreman-mode. The second example is about Pr_{0.5}La_{0.2}Ca_{0.3}MnO₃/YBa₂Cu₃O₇/Pr_{0.5}La_{0.2}Ca_{0.3}MnO₃ (PYP) trilayers for which we recently discovered a very unusual kind of insulator-to-superconductor transition as a function of an applied magnetic field. Our THz-ellipsometry and magneto-transport data reveal that the insulator-like response at zero magnetic field arises in fact from a granular superconducting state with very efficient domain boundaries that completely block the superconducting phase coherence.