MAS20-2020-000032

Abstract for an Invited Paper for the MAS20 Meeting of the American Physical Society

Discovery of Topological Magnets in 2D and 3D

M. ZAHID HASAN, Princeton University

In this talk I present our research on 2D and 3D topological magnets in novel topological, Weyl-Dirac and kagome materials. I start with a demonstration of Chern gap in topological magnets based on intrinsic topological insulators (https://arxiv.org/pdf/0812.2078.pdf (2008) leading to S.-Y. Xu et.al., "Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator" Nature Physics 8, 616 (2012)) then describe a set of ideas and experiments that led to the discovery of Weyl magnets (Belopolski et.al., "Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet" SCIENCE 365, 1278 (2019)) and demonstration that certain kagome magnets can be topologically non-trivial (Yin et.al., NATURE 562, 91 (2018)) which then led to a new class of Chern magnets (Yin et.al., "Quantum-limit Chern topological magnetism in TbMn6Sn6" NATURE 583, 533 (2020)) with gap larger than 30 meV (>300K). Our unique approach regarding the magnetic bulk-boundary-Berry correspondence covering real space and momentum space demonstrates a proof-of-principle method for revealing or discovering new topological magnets.