MAS20-2020-000142

Abstract for an Invited Paper for the MAS20 Meeting of the American Physical Society

Using Information Geometry to Find Simple Models of Complex Processes MARK TRANSTRUM, Brigham Young University

Effective theories play a fundamental role in how we reason about the world. Although real physical processes are very complicated, useful models abstract away the irrelevant degrees of freedom to give parsimonious representations. I use information geometry to construct simplified models for many types of complex systems, such as biology, neuroscience, statistical physics, and complex engineered systems. I interpret a multi-parameter model as a manifold embedded in the space of all possible data, with a metric induced by statistical distance. These manifolds are often bounded and very thin, so they are well-approximated by a low-dimensional, simple model. For many types of models, there is a hierarchy of natural approximations that reside on the manifold's boundary. These approximations are not black-boxes. They remain expressed in terms of the relevant combinations of mechanistic parameters and reflect the physical principles on which the complicated model was built. They can also be constructed in a systematic way using computational differential geometry.