Abstract Submitted for the NEF05 Meeting of The American Physical Society

Investigation of the interface structure in sputtered WSi₂/Si multilayers by in-situ synchrotron X-ray scattering. YIPING WANG, HUA ZHOU, LAN ZHOU, RANDALL HEADRICK¹, University of Vermont, Department of Physics, ALBERT MACRANDER², Advanced Photon Source, Argonne National Laboratory, AHMET ÖZCAN, KARL LUDWIG³, Boston University, Department of Physics — We report on the growth of WSi₂ and Si amorphous thin films by dc magnetron sputtering in a vacuum chamber with 10^{-9} Torr base pressure. In-situ synchrotron X-ray scattering with high temporal resolution has been employed to probe the surface and interface roughness evolution during film deposition. X-ray reflectivity simulations were performed using the IMD software package. It is found that the structure of WSi₂/Si multilayers is with an alternately smooth and rough interface. The ion energy and flux assisting the growth may play a role in inducing this asymmetry in the interface roughness.

¹Burlington, VT 05405 ²Argonne, Illinois 6043 ³Boston, MA 02215

Yiping Wang

Date submitted: 29 Sep 2005

Electronic form version 1.4