Abstract Submitted for the NEF08 Meeting of The American Physical Society

Earth's Atmospheric CO₂ Saturated IR Absorption ERNST WALL — Using the on-line SpectraCalc IR absorption simulator, the amount of IR absorption by the 15 μ line of the current atmospheric CO₂ was obtained and compared with that of twice the amount of CO_2 . The simulation required a fixed density equivalent for the atmospheric path length. This was obtained by numerically integrating the NOAA Standard Atmospheric model. While the current line is saturated, doubling the CO_2 will cause a slight width increase. Using this and the blackbody radiation curve plus considering the effects of water vapor, the temperature rise of the Earth will be less than 2.5 deg. C. Integrating a NASA Martian atmospheric model, we find that the Martian atmosphere has 45 times more CO_2 to penetrate than Earth, and yet, the Martian diurnal temperature swings exceed those of the Sahara desert. I.e., large amounts of CO_2 alone do not necessarily cause planetary warming. As the oceans warm from any cause, more CO_2 is boiled out, but if they cool, they will absorb more CO_2 just as a carbonated drink does, so that temperature and CO_2 density will correlate. It is to be noted that the Earth's known petroleum reserves contain only enough CO_2 to increase the atmospheric CO_2 by some 15%.

> Ernst Wall Lockheed, Inc.

Date submitted: 17 Sep 2008

Electronic form version 1.4