Abstract Submitted
for the NEF10 Meeting of
The American Physical Society

Statistical Equilibria of Turbulence on Surfaces of Different Symmetry

WANMING QI, JOHN MARSTON, Brown University — We test the validity
of statistical descriptions of freely decaying two-dimensional turbulence by perform-
ing direct numerical simulations (DNS) of the Euler equation with hyperviscosity
on two surfaces of different symmetry, namely, the square torus and the sphere.
DNS shows, at long times, a dipolar coherent structure in the vorticity field on the
torus but a quadrupole on the sphere [1]. We look for a theoretical explanation in
the truncated Miller-Robert-Sommeria theory that conserves the fine-grained enstro-
phy, while also respecting conservation laws that reflect the symmetry of the domain.
This theory is shown to be equivalent to the phenomenological minimum-enstrophy
principle [2]. Finally, the theoretical results agree with DNS, and the calculation
reveals how the conservation of zero angular momentum forces the sphere to have
one more dipole pair than on the torus.

Wanming Qi
Brown University

Date submitted: 01 Oct 2010 Electronic form version 1.4