Abstract Submitted
for the NEF19 Meeting of The American Physical Society

Revisiting Lorentz Transformations with Quaternions DOUGLAS SWEETSER, Quaternions.com - Minkowski recognized that special relativity could be viewed as a rotation in a 4D vector space. Unit quaternions (the compact Lie group $\mathrm{SU}(2)$) are a double cover for 3D rotations, $\mathrm{SO}(3)$. It was long claimed that representing the non-compact Lorentz group $\mathrm{SO}(3,1)$ with quaternions could not be done. In 2010 I found a way to generalize a rotation to do Lorentz boosts (Dr. Kharinov discovered independently):

$$
B \rightarrow B^{\prime}=h B h^{*}+\frac{1}{2}\left((h h B)^{*}-\left(h^{*} h^{*} B\right)^{*}\right)
$$

If $h=(\cosh (x), I \sinh (x))$, this do a Lorentz boost. In 2013 I noticed that for a quaternion cross product normalized to one, the scalar term is zero and the second and third terms cancel leaving the 3D rotation. Physics cannot be done with spacetime alone. Space-time is a base space and an affine space, energy-momentum. Three rotations live in space-time, three velocities in energy-momentum. View the quaternion scalar as time and the 3 -vector as space, so animations of $\operatorname{SU}(2)$ and $\mathrm{SO}(3,1)$ can be created. $\mathrm{SU}(2)$ starts as a point, specifically $\mathrm{t}=-1$ at the spatial origin. It grows to its maximum size at time-now, $t=0$. The sphere shrinks to zero size at $\mathrm{t}=1$. The animation for $\mathrm{SO}(3,1)$ starts out infinitely huge, shrinks to its smallest size at $\mathrm{t}=0$ matching $\mathrm{SU}(2)$ before expanding to infinity.

Douglas Sweetser
Quaternions.com

