Abstract Submitted for the NEF19 Meeting of The American Physical Society

High spin intruder states of 47 Sc and 48 Sc using fusion evaporation reactions PETER DEROSA, ANDREW MACGREGOR, DANIEL FOULD-SHOLT, Student Researcher, PETER BENDER, Professor — Identifying collective states with clear n-particle-n-hole structure near closed shells can reveal deformation driving orbital characteristics. Such states, often high-spin in nature, can be populated using the fusion-evaporation reaction mechanism, extracted using gamma-ray spectroscopy techniques and compared to state-of-the-art theoretical shell model calculations. Recently, an experiment to look for intruder states in 47,48 Sc was done using the 36 S(14 C, p) and 36 S(14 C, pn) reactions at 34-MeV performed at Florida State University's John D. Fox superconducting Laboratory. The experimental setup included an array of HPGe detectors surrounding the enriched 36 S as well as a Si particle detector telescope located at zero-degrees with respect to the beam axis. The telescope has allowed specific reaction residue to be correlated with observed γ -rays. We present preliminary results from the experiment.

¹This work is funded by the US Department of Energy.

Peter DeRosa Student Researcher

Date submitted: 27 Sep 2019 Electronic form version 1.4