Abstract Submitted for the NES06 Meeting of The American Physical Society

Noumen Mechanics: a Program EDOUARD ROCHER — Noumen Mechanics (NM): geometric synthesis between Relativistic Mechanics (RM) and Quantum Mechanics (QM) based on a more fundamental approach to RM. Events (1905) are geometric points in Minkowski space-time M⁴, noumens (1972) in C⁴, M⁴ complex extension. A noumen is a chiral entity containing more information than an event, thus suggesting doing physics in C^4 instead of M^4 . Three main principles: Representation duality: $M^4 = C^{4*}xC^4$ since Sl(2;C) acts on C⁴ and is the fundamental representation of the Lorentz group. Homogeneous hypercomplex space: C⁴ and M^4 are quotient spaces of homogeneous spaces CC^4 and MM^4 . A geometric point is represented by a homogeneous class; the coefficients of homogeneity λ is its electroweak charge in CC⁴, and $\mu = |\lambda|^2$ its mass in MM⁴. Analytic function of physical *points:* Physical points are bounded sets of geometric points, noumens in C^4 , events in M^4 , with the resulting electroweak charge and mass. *Phase 1*: gain a deeper understanding of the mathematical sources of QM and RM. Two main NM results: bound electrons do not radiate; C^4/M^4 is the solution to physics hierarchy problem. *Phase 2*: apply new concepts to nuclear physics, following Pauli's interpretation (1936) of Fermi's weak-interaction constant (1934).

> Edouard Rocher Retired (IBM Research Yortown)

Date submitted: 16 Mar 2006

Electronic form version 1.4