NES21-2021-000021

Abstract for an Invited Paper for the NES21 Meeting of the American Physical Society

Symmetry engineering of functionality in ultrathin layered oxides JOHANNA NORDLANDER, Harvard University

The breaking of spatial and temporal symmetries are ubiquitous concepts in condensed-matter science. Such symmetry breaking defines the appearance of technologically relevant effects such as piezoelectricity, photovoltaic effects, nonlinear optical properties and spin-transport phenomena. It also determines fundamental properties such as the electronic topology in quantum materials. Therefore, the creation of materials where symmetry can be set by design stands out as a versatile approach for controlling emergent phenomena. Here we show how engineering spatial inversion symmetry on a sub-unit-cell level in ultrathin layered oxide films leads to the controlled activation and deactivation of optical second harmonic generation as a prototypical inversion-symmetry-sensitive functionality. Combining this nonlinear optical detection with thin-film deposition, we further present a novel route for in-situ tracking of the symmetry state of our thin films directly during synthesis. Symmetry engineering on the sub-unit-cell level in layered oxides thus suggests a new platform for the controlled activation and deactivation of symmetry-governed functionalities in oxide-electronic epitaxial thin films.