Abstract Submitted for the NWS05 Meeting of The American Physical Society

Higgs-free symmetry breaking mechanism from the complex dynamics of Levy flows ERVIN GOLDFAIN, OptiSolve Consulting — Using the statistical model of Levy flows, we derive the following Higgs-free formula for gauge boson masses:

$$m_{W(Z)} = \frac{G_F^{-1/\!4}}{2\sqrt{2\pi}} \sqrt{\frac{\gamma \Gamma_{W,(Z)}}{\alpha_{self,W(Z)}}} \label{eq:mwz}$$

where γ denotes the damping parameter associated with the dynamics of the flow, G_F is the Fermi constant and $\Gamma_{W(Z)}$ represents the decay width of the W(Z) boson, respectively. The self-interaction strength $\alpha_{self,W(Z)}$ takes on two possible values, $\alpha_{self} = \alpha_2$ for Z^0 and $\alpha_{self} = \alpha_2 + \alpha_{EM}$ for W^+, W^- . Here, α_2 is the weak isospin strength and α_{EM} is the fine structure constant. From this formula, we predict

$$m_{W^{\pm}} = 78.4 GeV, \quad m_{Z^0} = 91.7 GeV$$

These values are in good agreement with experimental data ($m_W^{\rm exp}=80.46 GeV, m_Z^{\rm exp}=91.19 GeV$).

Ervin Goldfain OptiSolve Consulting

Date submitted: 04 Apr 2005 Electronic form version 1.4