Laboratory Detection of Cold Dark Matter as Sidereal Dilaton
Scattering Data

GEORGE SOLI, Integrated Detector Systems — An experiment
designed to prove that the one-way group-velocity of slow-photons does not exist,
produces a surprising positive result. The one-way velocity is larger than simple
Newtonian velocity addition of the photon’s velocity and Earth’s velocity relative to
the CMB, indicating that the photons must be interacting with something at rest
relative to the CMB. That something turns out to be CDM that is the dilaton or
Goldstone boson of scale-invariance symmetry-breaking, that is at rest relative to
the CMB with a mass greater than our photon’s vacuum excitation energy of 3.3
μeV. This non-classical scattering interaction with dilatonic CDM is mediated by
the magnetic fine structure constant (137) discovered as a Morse function critical
point in the higher dimensional anti de Sitter space used to model the scattering
interaction. The vacuum excitation energy saturates the Ford-Roman quantum
inequality implying that the Goldstone boson is also negative pressure dark energy,
solving the dark matter-energy coincidence problem. This CDM also solves many
other cosmological problems. It has already been argued in the literature that
Einstein thought of our measured slow-photon magnetic flux tubes first.

George Soli
Integrated Detector Systems

Date submitted: 18 Apr 2007

Electronic form version 1.4