Abstract Submitted for the NWS07 Meeting of The American Physical Society

Spectroscopic measurements of Ba+ JOSEPH PIRTLE, RYAN BOWLER, SANGHOON CHONG, Undergrad, MATT DIETRICH, GARY HOW-ELL, ADAM KLECZEWSKI, NATHAN KURZ, Grad, VIKI MIRGON, PHIL NELSEN, JOANNA SALACKA, Undergrad, GANG SHU, LI WANG, Grad, BORIS BLINOV, PI — Our goal is to measure the atomic structure of Ba^+ to a new degree of accuracy. We confine and laser-cool a single barium ion in an RF quadrupole. We intend on measuring the branching ratios for the $6P_{3/2}$ - $5D_{5/2}$ and the $6P_{3/2}$ - $5D_{3/2}$ decays in Ba⁺. The measurement is achieved by first exiting the ion to the $6P_{3/2}$ state with a short duration of a 455 nm shelving laser. We then allow the ion to decay, which will result in one of three states: $5D_{5/2}$, $5D_{3/2}$, and $6S1_{/2}$. Next we use a 650 nm laser to re-pump the ion out of the $5D_{3/2}$ into the $6P_{1/2}$ and another 493nm to transition from $6S_{1/2}$ to $6P_{1/2}$. If the ion fluoresces in this $6S_{1/2}$ - $6P_{1/2}$ - $5D_{3/2}$ cycle then we know the original decay out of $6P_{3/2}$ was into either $5D_{3/2}$ or $6S_{1/2}$. By incrementally increasing the duration of the 455 nm excitation the probability of decay into the $6S_{1/2}$ is exponentially decreased. With enough data points we can extrapolate the saturation between the probabilities of fluorescent and non-fluorescent cycles. The branching ratio between the decays into the $5D_{5/2}$ and $5D_{3/2}$ states is the ratio of these probabilities in this limit. Our future experiments include the precision RF spectroscopy of the $5D_{5/2}$ state in $^{137}Ba^+$ and the measurement of the $5D_{5/2}$ state lifetime.

> Joseph Pirtle Undergrad

Date submitted: 02 May 2007

Electronic form version 1.4