Phase transitions and ferroelectricity in NaSb$_3$F$_{10}$  

PETER WU, PANOS PHOTINOS, SIDNEY ABRAHAM, JASON MATTHEWS$^1$, R. CHRISTIE, Southern Oregon University — The structural prediction that NaSb$_3$F$_{10}$ is a new ferroelectric has been confirmed experimentally. The mean phase transition temperature $T_C \approx 461 \text{ K}$ with an associated entropy change $\sim 6 \text{ J mol}^{-1} \text{ K}^{-1}$. The colorless crystals melt at $T_m \sim 515 \text{ K}$ with decomposition starting at $\sim 600 \text{ K}$. A thermal hysteresis in $T_C$ of $\sim 35 \text{ K}$ between heating and cooling at $25 \text{ K min}^{-1}$ is typical of a first order phase transition. The space group in ferroelectric phase III is $P6_3$, that in the predicted antiferroelectric phase II is $P6_322$, a supergroup of $P6_3$. The space group of prototypic nonferroic phase I is supergroup $P6_3/mmc$, of which the space group of phase III is not a subgroup. The dielectric permittivity at 100 Hz increases more than an order of magnitude from 350 K before undergoing a major inflection at $T_C = 460(10) \text{ K}$; it increases thereafter to $T_m$. The dielectric loss at 100 Hz is low but increases an order of magnitude from its value at $\sim 350 \text{ K}$ before undergoing an inflection at $\sim 460 \text{ K}$, also rising steadily thereafter to $T_m$. The reproducible dielectric hysteresis loop, with $P_s \approx 20\mu \text{ C m}^{-2}$ at room temperature under the application of 0.3 MV m$^{-1}$ a.c. or greater, unambiguously verifies the predicted ferroelectric property. The pyroelectric coefficient $\langle p \rangle = 17(5)\mu \text{ C m}^{-2} \text{ K}^{-1}$ at 298 K.

$^1$Currently enrolled at UO

Peter Wu
Southern Oregon University

Date submitted: 18 Apr 2008