Abstract Submitted for the NWS08 Meeting of The American Physical Society

Phase transitions and ferroelectricity in NaSb₃F₁₀ PETER WU, PANOS PHOTINOS, SIDNEY ABRAHAM, JASON MATTHEWS¹, R. CHRISTIE, Southern Oregon University — The structural prediction that NaSb₃F₁₀ is a new ferroelectric has been confirmed experimentally. The mean phase transition temperature $T_{\rm c} \approx 461~{\rm K}$ with an associated entropy change $\sim 6~{\rm J~mol^{-1}}$ $\rm K^{-1}$. The colorless crystals melt at $T_{\rm m} \sim 515~\rm K$ with decomposition starting at ~ 600 K. A thermal hysteresis in T_c of ~ 35 K between heating and cooling at 25 K min⁻¹ is typical of a first order phase transition. The space group in ferroelectric phase III is $P6_3$, that in the predicted antiferroelectric phase II is $P6_322$, a supergroup of $P6_3$. The space group of prototypic nonferroic phase I is supergroup $P6_3/mmc$, of which the space group of phase III is not a subgroup. The dielectric permittivity at 100 Hz increases more than an order of magnitude from 350 K before undergoing a major inflection at $T_{\rm c} = 460(10)$ K; it increases thereafter to $T_{\rm m}$. The dielectric loss at 100 Hz is low but increases an order of magnitude from its value at \sim 350 K before undergoing an inflection at \sim 460 K, also rising steadily thereafter to $T_{\rm m}$. The reproducible dielectric hysteresis loop, with $P_{\rm S}\approx 20\mu$ C m⁻² at room temperature under the application of 0.3 MV m⁻¹ a.c. or greater, unambiguously verifies the predicted ferroelectric property. The pyroelectric coefficient $\langle p \rangle = 17(5)\mu$ C m⁻² K^{-1} at 298 K.

¹Currently enrolled at UO

Peter Wu Southern Oregon University

Date submitted: 18 Apr 2008 Electronic form version 1.4