JINKE TANG, University of Wyoming

Enhanced tunneling magnetoresistance and high spin polarization in polystyrene coated Fe₃O₄ granular system

Polystyrene coated Fe₃O₄ nanoparticles through surface engineering exhibit intergranular tunneling magnetoresistance (MR) ratio of 22.8% at room temperature and a maximum MR of 40.9% at 110 K. The drastic enhancement of the MR ratio clearly suggests that there is high degree of spin polarization even at room temperature for half metallic Fe₃O₄. The derived spin polarization P is about 54% and 83% at room temperature and 110 K, respectively. It is possible that a simple tunnel junction made of Fe₃O₄ exhibits large MR in a relatively small field. Fe₃O₄ may also be used as an effective spin injector. Knowing that our results provided only a lower limit on the spin polarization of Fe₃O₄, it has the potential to play an important role in spintronic devices.

¹This work was supported by Sharp Laboratories of America, University of Wyoming SER/MGF and Louisiana Board of Regents Support Fund.