Patterns in the Long Term Behavior of Eclipsing Binary Star System 44i-Bootis

CAITLIN BYRD-FISHER, JEANINE FALLEN BAILEY, THOMAS OLSEN, Lewis & Clark College, Portland, OR — Previously, we have assembled data on the binary star system 44i Bootis, collected by our group and others over nearly a century, concerning the timing of its primary eclipses. These have been previously modeled by an ephemeris equation, assuming a constant orbital period. We have previously shown that the system is slowing down a uniform rate. We present data demonstrating a small sinusoidal trend in the remaining differences between eclipse time observations and calculations (an O-C diagram). We sought to model the cause of this variation by the gravitational interaction of a planet orbiting the binary star pair. Such a planet would necessarily be a brown dwarf of 0.0475 solar masses, with a semi-major axis of 10.729 AU. We are examining the stability of such an orbit. We also present initial data for the binary star system VW Cephei.

Supported by the Rogers Science Research Program

Thomas Olsen
Lewis & Clark College

Date submitted: 28 Apr 2008

Electronic form version 1.4