Inhomogeneous Fluctuating Superconductivity Near Room Temperature

JEFF SONIER, Simon Fraser University

Over the past decade, a diverse set of experiments on high-transition temperature (T_c) cuprate superconductors have produced evidence for the existence of superconducting correlations on short time and/or length scales at temperatures well above the bulk T_c. This includes the discovery of an unusual magnetic-field induced effect in YBa$_2$Cu$_3$O$_y$ and La$_{2-x}$Sr$_x$CuO$_4$ above T_c using an intense beam of spin-polarized muons at TRIUMF. The measurements show that an externally applied field induces a static internal magnetic field distribution at high temperatures far above T_c, and that the degree of field inhomogeneity is correlated with the bulk superconductivity that occurs below T_c. These findings indicate that non-uniform fluctuating superconductivity does survive in some samples at temperatures approaching room temperature. These experiments and the implications for room-temperature superconductivity will be discussed.

This work is supported by NSERC and the Canadian Institute for Advanced Research