Quantum critical scaling in magnetic field near the Dirac point in graphene

BITAN ROY, IGOR HERBUT, Simon Fraser University — Graphene, a monolayer of graphite, exhibits some peculiar electronic properties which are consequences of the pseudo relativistic Dirac like excitations. The anomalous integer quantum Hall effect, i.e., plateaus in Hall conductivity \(\sigma_{xy} \) at filling factors \(f = \pm(4n + 2) \), which can be understood within the framework of non-interacting Dirac like quasiparticles is one of such. On the other hand, the appearance of additional Hall states at filling factors \(f = 0 \) and \(f = \pm 1 \) at higher magnetic fields calls for electron-electron interactions to be taken into account. Motivated by the recent measurement of the activation energy at the quantum Hall state at the filling factor \(f = 1 \) in graphene, I will discuss the scaling of the interaction-induced gaps in the vicinity of the Dirac point with the magnetic field. The gap at \(f = 1 \) is shown to be bounded from above by \(E(1)/C \), where \(E(n) = v_F \sqrt{2nB} \) is the Landau-level energy and \(C = 5.985 + O1/N \) is a universal number. The universal scaling functions computed exactly for a large number of Dirac fermions \(N \) will also be presented. The sublinear dependence of the gap at the laboratory fields of \(10T < B < 50T \) for realistic values of short-range repulsion between electrons, in quantitative agreement with observation will also be presented.

Bitan Roy
Simon Fraser University

Date submitted: 12 May 2009