Abstract Submitted for the NWS09 Meeting of The American Physical Society

Upgrade of the $\beta-\nu$ correlation experiment with beta decay of optically trapped ^{38m}K atoms¹ ALEXANDRE GORELOV, JOHN BEHR, PETER JACKSON, MATT PEARSON, TRIUMF, DANNY ASHERY, Tel Aviv University, DAN MELCONIAN, Texas A&M University — TRIUMF's $\beta-\nu$ correlation measurements from beta decay of optically trapped ^{38m}K atoms resulted in the world best limit on the presence of general scalar interaction in superallowed $0^+ \rightarrow 0^+$ Fermi decays (PRL 94,142501,2005). Observing trapped atoms by $\Delta E - E$ scintillator based beta-telescope and MCP based recoil detector in back-to-back geometry, we were able to deduce $\beta-\nu$ correlations. Analysis of the systematics has shown that the main limitations come from characterisation of the beta-detector, applied electric field and knowlege of energy dependent probability of the recoil ionization. A new improved setup utilyzing larger experimental chamber and detectors and stronger, better characterized applied electric field should allow us to significantly reduce systematic errors and reach 0.1% resulting error.

¹Support from NSERC, NRC through TRIUMF, Israel Science Foundation.

John Behr TRIUMF

Date submitted: 13 Apr 2009

Electronic form version 1.4