Growth of tin sulfide thin films by pulsed laser deposition

JASON FRANCIS, JANET TATE, Physics Department, Oregon State University —
Polycrystalline thin films of tin sulfide were grown on fused quartz substrates from an Sn$_2$S$_3$ target by pulsed laser deposition at temperatures ranging from 200°C to 500°C and pulse rates between 3Hz and 10Hz. 100nm thick films absorb roughly 50% of incident light in the 400 to 700nm range, and have an optical band gap of approximately 1.5eV. Hall measurements give mobilities of 4 to 15cm2/Vs, carrier concentrations of .25 to 2.5 x 1016 cm$^{-3}$, and resistivities of 120 to 1000Ωcm, depending on deposition conditions. These properties indicate that tin sulfide may be suitable for use as an absorber layer in thin film photovoltaic devices.

Jason Francis
Physics Department, Oregon State University

Date submitted: 27 Aug 2010