Abstract Submitted for the NWS11 Meeting of The American Physical Society

Multifrequency EPR/ENDOR/optical study of ytterbium centers in stoichiometric lithium niobate¹ VALENTIN GRACHEV, Montana State University, VIKTOR BRATUS, Institute of Semiconductor Physics, Kiev, Ukraine, EDWARD KOKANYAN, Institute of Physical Researches, Ashtarak, Armenia, GALINA MALOVICHKO, Montana State University — The tremendous narrowing of lines of Electron Paramagnetic Resonance (EPR) in nearly stoichiometric lithium niobate samples, when compared to those in congruent samples, allowed us to distinguish nine non-equivalent centers, as well as line splitting caused by the hyperfine interaction of ytterbium electrons with the nuclear spins of 171 Yb and 173 Yb. Three Yb³⁺ centers have axial C₃ symmetry; all others have the lowest C₁ symmetry due to the presence of intrinsic defects and/or charge compensation defects in the near neighborhood of Yb³⁺. Our study of Electron Nuclear Double Resonance (ENDOR) gave direct evidence that Yb^{3+} in the main axial center substitutes for Li⁺ and has no other defects in its surrounding (distant charge compensation mechanism). Possible models for low-symmetry centers are proposed. The obtained numerous characteristics of g-tensors and hyperfine tensors can be used as cornerstones for model calculations of Yb³⁺ centers in lithium niobate.

¹The work was supported by NSF grant DMR-0805175.

Valentin Grachev Montana State University

Date submitted: 15 Sep 2011

Electronic form version 1.4