Abstract Submitted for the NWS12 Meeting of The American Physical Society

SRF cavity and HOM damper tests at TRIUMF for ARIEL PHILIPP KOLB, ROBERT LAXDAL, VLADIMIR ZVYAGINTSEV, TRIUMF — The eLINAC for ARIEL¹ consists of 5 superconducting nine cell cavities operating at 1.3 GHz, each cavity with a accelerating voltage of 10 MV. The design requires a quality factor of $1 \cdot 10^{10}$ or higher at the operating temperature of 2 K for 10 W dissipated power in the cavity walls. Latest SRF² tests of a 1.3 GHz niobium single cell cavity will show that procedures at TRIUMF are capable of exceeding the RF requirements of ARIEL. Future upgrade plans for the eLINAC include a recirculating arc to either increase the energy of the 10 mA electron beam or drive an FEL³ in ERL⁴ mode. BBU⁵ is a limitation in recirculating LINACs. Its strength depends on a number of parameters including the shunt impedance R_{Sh} of HOM,⁶ especially dipole modes, of the SRF cavity. Using beam line absorbers made out of a low electric conductive material reduces the Q_L of the cavity and therefore reduces the R_{Sh} . Qualification of such a material is essential and measurements of the electrical conductivity of a candidate material will be presented in addition to the cavity tests.

¹Advanced Rare Isotope Experiment Laboratory ²Superconducting Radio Frequency ³Free Electron Laser ⁴Energy Recovery LINAC ⁵Beam Break-Up ⁶Higher Order Modes

> Philipp Kolb TRIUMF

Date submitted: 14 Sep 2012

Electronic form version 1.4