Abstract Submitted for the NWS12 Meeting of The American Physical Society

β-decay study of neutron-rich ¹⁰²Rb at TRIUMF-ISAC¹ ZHIMIN WANG, SFU and TRIUMF — Experimental investigations of the β -decay properties of nuclei which lie along the astrophysical r-process are becoming possible with modern facilities and detection systems. In this experiment, a ¹⁰²Rb beam was produced by 500 MeV, 10 μ A protons impinging on a multilayer UC_x target at TRIUMF-ISAC Facility. The beam of ¹⁰²Rb ions was implanted on a movable tape at the center of the 8π spectrometer. The 20 HPGe 8π γ -ray detectors were coupled with SCEPTAR, an hemispherical array of scintillators for β -tagging and DANTE, an array of five LaBr₃ detectors for fast γ -ray timing. A preliminary analysis has allowed the first identification of the 4^+ to 2^+ transition in the daughter nucleus, ¹⁰²Sr. A near identical low-lying band structure of ¹⁰²Sr with ^{98, 100}Sr nuclei has been observed, indicating the rigidly deformed rotational nature continues towards to the N=66 midshell. The current experimental measurements of $^{102}\mathrm{Rb}$ β -decay half life as well as the β -delayed neutron emission branching ratio compared with reported values, the shorter β -decay half life and the larger β -delayed neutron emission branching ratio will locally reshape astrophysical r-process predictions.

¹This work is supported by the NSERC (Canada). The contribution of the ISAC staff from TRIUMF-ISAC facility is gratefully acknowledged.

Zhimin Wang SFU and TRIUMF

Date submitted: 19 Sep 2012 Electronic form version 1.4