Abstract Submitted for the NWS14 Meeting of The American Physical Society

Band Gap and Phase Stability in $(Al_xGa_{1-x})_2O_3$ Alloy Films BENJAMIN KRUEGER, Univ of Washington, JOHN WALSETH, Roosevelt High School, FUMIO OHUCHI, MARJORIE OLMSTEAD, University of Washington -Gallium oxide is a transparent semiconductor ($E_g = 4.8 \text{ eV}$) that exhibits n-type conductivity; it has been proposed for a variety of uses ranging from "solar-blind" conductive coatings to chemical sensing. An intriguing possibility is development of transparent, high power transistors based on carrier accumulation at an epitaxial Ga_2O_3 -(Al_x $Ga_{1-x})_2O_3$ alloy interface. Using pulsed laser deposition, compositionspread $(Al_xGa_{1-x})_2O_3$ thin films were fabricated on sapphire and silicon substrates, with x varying smoothly across the surface. Position-dependent X-ray diffraction revealed [-201]-oriented Ga₂O₃ on c-plane sapphire, and unoriented Ga₂O₃ on silicon with native oxide. Alloy $(Al_xGa_{1-x})_2O_3$ films on sapphire remain in the β -Ga₂O₃ phase for x < 0.30 then relax to the α -Al₂O₃ phase, whereas films on silicon remain in the β -Ga₂O₃ phase for x<0.35 and then relax into the cubic γ -Al₂O₃ phase. Photoemission spectroscopy shows core and valence levels shifting to higher binding energy and decreasing work function, while spectroscopic ellipsometry reveals the absorption edge moving to higher photon energy, consistent with a widening band gap.

> Benjamin Krueger Univ of Washington

Date submitted: 24 Mar 2014

Electronic form version 1.4