Abstract Submitted for the NWS15 Meeting of The American Physical Society

Spin Hall effect in disordered organic solids ZHI-GANG YU, Applied Sciences Laboratory, Washington State University — We study the spin Hall effect (SHE) in disordered π -conjugated organic solids, where individual molecules are oriented randomly and electrical conduction is via carrier hopping. The SHE, which arises from interference between direct $(i \rightarrow j)$ and indirect $(i \rightarrow k \rightarrow j)$ hoppings in a triad consisting of three molecules i, j and k, is found to be proportional to $\lambda(\mathbf{n}_i \times$ $\mathbf{n}_j + \mathbf{n}_j \times \mathbf{n}_k + \mathbf{n}_k \times \mathbf{n}_i)$, where λ is the spin admixture of π electrons due to the spinorbit coupling and \mathbf{n}_i is the orientation vector of molecule i. Electrical conductivity σ_{qq} (q = x, y, z) and spin-Hall conductivity σ_{sh} are computed by numerically solving the mater equations of a system containing $32 \times 32 \times 32$ molecules and summing over contributions from all triads in the system. The obtained value of spin Hall angle, $\Theta_{sh} \equiv \sigma_{sh}/\sigma_{qq}$, is consistent with experimental data in PEDOT:PSS, with a predicted temperature dependence as $\log \Theta_{sh} \sim T^{-1/4}$.

> Zhi-Gang Yu Applied Sciences Laboratory, Washington State University

Date submitted: 10 Apr 2015

Electronic form version 1.4