Abstract Submitted for the NWS15 Meeting of The American Physical Society

 Sb_xO_y thin films using pulsed lased deposition¹ JAMES HAGGERTY, BETHANY MATHEWS, JANET TATE, Oregon State University, VLADAN STEVONOVIC COLLABORATION², STAPHAN LANY COLLABORATION³ — We demonstrate synthesis of Sb_2O_3 and Sb_2O_4 thin films on heated glass, and fused SiO_2 slides in an oxygen atmosphere using pulsed laser deposition and ex-situ annealing in air. GW calculations with spin-orbit corrections predict that the band gap of Sb_2O_3 changes from 3.4 eV in the orthorhombic β phase to 4.7 eV in the cubic α -phase. Sb₂O₄ also forms two polymorphic structures, orthorhombic α -Sb₂O₄, and monoclinic β -Sb₂O₄. Optical absorption and crystal structure are investigated using transmission/reflection spectroscopy and grazing incidence x-ray diffraction. Optical absorption measurements of α -Sb₂O₄ show a band gap of 3.9 eV which is far from the DFT predicted band gap of 2.1 eV but agrees with previous measurements. Structural analysis shows that from an α -Sb₂O₄ target, α - Sb-₂O₄ thin films are formed at a temperature and pressure of 400 °C and 3 mTorr. Deposition at higher pressures (6 and 12 mTorr) produces amorphous films that, when annealed at 500 °C become a mixture of α -Sb₂O₄ and an additional cubic phase of Sb_2O_4 .

¹The work was supported as part of the Center for the Next Generation of Materials by Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

²Colorado School of Mines ³National Renewable Energy Laboritory

> James Haggerty Oregon State University

Date submitted: 13 Apr 2015

Electronic form version 1.4