Non-linear optics in cold 87Rb atoms at ultralow powers via an optical nanofiber

VANDNA GOKHROO1, RAVI KUMAR2, SILE NÍC CHOMAIC, Okinawa Institute of Science and Technology Graduate University, Japan

— Tight confinement of the evanescent field around subwavelength diameter optical nanofibers (ONF) presents a suitable tool for studying nonlinear optics in atomic media. Such ultrathin fibers integrated with cold atoms can also provide ideal building blocks for atom-photon hybrid quantum networks. Here, we study phenomena, e.g. Autler-Townes splitting (ATS) and electromagnetically induced transparency (EIT) using a \sim350 nm diameter ONF surrounded by laser-cooled rubidium atoms. We use a near or on-resonance two-photon excitation process in a three-level ladder type configuration to observe the effects. The impact of the high intensity light field on the ground and intermediate atomic states is studied in terms of ATS [1]. Multi-level cascaded EIT is demonstrated and exploited to make an all-optical switch [2]. Power levels needed to observe these nonlinear effects are in the range of nanoWatts. Apart from their fundamental importance, these studies will be useful for fiber based quantum networks with Rydberg atoms. Reference: [1] R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, Phys. Rev. A 91, 053842 (2015) [2] R. Kumar, V. Gokhroo, and S. Nic Chormaic, New J. Phys. 17, 123012 (2015)

1Currently at Washington State University, USA
2Currently at National University of Singapore, Singapore

Vandna Gokhroo
Washington State University

Date submitted: 04 May 2016