Abstract Submitted for the NWS19 Meeting of The American Physical Society

Beta Decay of 80,82Ga with GRIFFIN and Shape Coexistence in ^{80,82}Ge AIMEE BELL, CORINA ANDREOIU, ISAIAH DJIANTO, FATIMA GARCIA, MELANIE GASCOINE, KEVIN ORTNER, KURTIS RAYMOND, KEN-NETH WHITMORE, JONATHAN WILLIAMS, Simon Fraser University, GRIF-FIN COLLABORATION — Shape coexistence in atomic nuclei, the existence of structures with different degrees of deformation in a narrow energy range, is an exciting phenomenon present across the chart of nuclides. In our experiment, we searched for evidence of shape coexistence in ⁸⁰Ge and ⁸²Ge by investigating their respective intruder 0_2^+ states. The experiment was performed at the ISAC-TRIUMF facility where 80 Ge and 82 Ge isotopes were formed from the β -decay of their parent isotopes, ⁸⁰Ga and ⁸²Ga, respectively. The two Ga beams were produced by the ISOL technique using a 480 MeV proton beam with a 10 μ A current colliding with a UC_x target. A specialized ion source was used to suppress Rb contamination. The β -decay was measured using the GRIFFIN spectrometer which was equipped with 15 HPGe detectors for γ -ray detection, a ZDS plastic scintillator for β -tagging, the PACES array which has 5 Si(Li) detectors for conversion electron spectroscopy and 8 LaBr₃ scintillators for fast timing measurements of nuclear levels. Using this array, correlated γ - γ , γ -electron and electron-electron data have been acquired simultaneously, providing a detailed level scheme for ⁸⁰Ge. Preliminary results will be presented.

> Aimee Bell Simon Fraser University

Date submitted: 12 Apr 2019 Electronic form version 1.4