Abstract Submitted for the OSF05 Meeting of The American Physical Society

Nuclear Lifetimes in ⁷⁹Sr¹ S.R. ARORA², R.A. KAYE, Ohio Wesleyan University, S.L. TABOR, Florida State University, J. DÖRING³, GSI, Germany — Lifetimes of eight discrete energy states in the ⁷⁹Sr nucleus were measured using the Doppler-shift attenuation method. These states were populated at high angular momentum using the ²⁸Si + ⁵⁴Fe fusion-evaporation reaction at 90 MeV, with a thick 14 mg/cm² ⁵⁴Fe target used to stop all recoiling nuclei. The de-exciting γ rays were measured in prompt coincidence using a Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. Lifetimes were determined from experimental line shapes measured at 145° relative to the beam direction. Quadrupole deformations β_2 inferred from the lifetimes in the two lowest-energy positive-parity state sequences indicate highly deformed structures, in agreement with theoretical predictions from total Routhian surface calculations. Of these two sequences, the one built upon a higher intrinsic energy may have a larger average deformation, in agreement with the theoretical calculations.

¹Supported in part by the National Science Foundation under Grant No. PHY-99-70991

²Present address: Dept. of Physics, Columbia University ³Present address: BFS, Germany

> Robert Kaye Ohio Wesleyan University

Date submitted: 20 Sep 2005

Electronic form version 1.4