Abstract Submitted for the OSF05 Meeting of The American Physical Society

Resistivity and Anomalous Hall Effect of Ga_{1-x}Mn_xAs KIMBERLY L. ADAMS, Department of Physics, John Carroll University, XINYU LIU, JACEK K. FURDYNA, Department of Physics, University of Notre Dame, JEFFREY S. DYCK, Department of Physics, John Carroll University — Diluted magnetic semiconductors (DMS) are compounds in which there is a non magnetic semiconductor host doped with a small concentration of a magnetic element. DMS thin films are being investigated for their potential as spintronic devices that would utilize both the spin and charge properties of the electrons in a single material. Resistivity and Hall effect measurements were made on varying thicknesses of $Ga_{1-x}Mn_xAs$ thin film samples through a temperature range of 10K-300K. The influence of the spin of the manganese ions is clearly evident in the electrical transport properties. The obtained data was compared to a model for the anomalous Hall Effect in these materials in an attempt to extract the free hole concentration. Funded by the Henry Luce Foundation and Research Corporation.

> Jeffrey S. Dyck John Carroll University

Date submitted: 29 Sep 2005

Electronic form version 1.4