Abstract Submitted
for the OSF07 Meeting of The American Physical Society

Convolution Dynamics G.C. STEY, Ohio State University - Define T on L^{1} into L^{1} by $(T f)(x)=\int_{-\infty}^{\infty} g(x-y) f(y) d y$. With assumptions on $g(x)$ and its Fourier transform, $\hat{g}(t)$, requiring, among other things, that there be only one point, t_{0}, at which $\left|\hat{g}\left(t_{0}\right)\right|=\sup _{s \epsilon R}|\hat{g}(s)|$ and that $0<\operatorname{Re}\left(K_{2}\right)$, where $K_{j}=$ $\left.(-i d / d t)^{j} \ln (\hat{g})\right)\left.(t)\right|_{t=t_{0}}$, it is seen(G.C. Stey, dissertation,Ohio State Univ.,2007) that for $L=1,2,3, \ldots,\left\|T^{n}\right\|=\left|\hat{g}\left(t_{0}\right)\right|^{n}\left\{\Sigma_{\ell=0}^{L} c_{\ell}\left(\frac{1}{n}\right)^{\ell}+o\left(\left(\frac{1}{n}\right)^{L}\right)\right\}$ as $n \rightarrow \infty$, where $c_{\ell}=\frac{1}{\sqrt{2 \pi\left|K_{2}\right|}} \int_{-\infty}^{\infty} e^{\left\{-w^{2} R e\left(\frac{1}{2 K_{2}}\right)\right\}} S_{2 \ell}(w) d w$, where $S_{0}(w)=1=Q_{0}(w)$, $S_{r}(w)=\Sigma_{m=1}^{r} m!\binom{1 / 2}{m} \Sigma_{\left(m_{1}, m_{2}, \ldots, m_{r}\right), m}^{\prime} \Pi_{j=1}^{r}\left[\Sigma_{j_{1}=0}^{j} Q_{j-j_{1}}(w) \bar{Q}_{j_{1}}(w)\right]^{m_{j}} / m_{j}!$, with $Q_{r}(w)=\Sigma_{m=1}^{r} H e_{2 m+r}\left(\frac{-w}{\sqrt{K_{2}}}\right) \Sigma_{\left(m_{1}, m_{2}, \ldots, m_{r}\right), m}^{\prime} \Pi_{j=1}^{r}\left\{\left(\frac{1}{\sqrt{K_{2}}}\right)^{2+j} \frac{K_{2+j}}{(2+j)!}\right\}^{m_{j}} / m_{j}!\quad(r=$ $1,2,3, \ldots), H e_{k}(u)=\exp \left(u^{2} / 2\right)(-d / d u)^{k} \exp \left(-u^{2} / 2\right)$, and Σ^{\prime} indicates $\Sigma_{j=1}^{r} m_{j}=$ m and $\Sigma_{j=1}^{r} j m_{j}=r$, with nonnegative integers m_{j}.
G. C. Stey

Ohio State University

