Abstract Submitted
for the OSF12 Meeting of The American Physical Society

Extending Newton's Apsidal Theorem ${ }^{1}$ CAMERON TUCKERMAN,

 ULRICH ZURCHER ${ }^{2}$, Physics Department, Cleveland State University - For the Kepler potential $\Phi_{0}=\mu / r$, the orbit is closed and the apsidal angle is a full circle $\Delta \Theta=2 \pi$. For the potential $\Phi(r)=\mu / r^{2-n}$, the orbit is open [Bertrand's theorem] and the trajectory has the general shape of a rosette. Newton found an expression for the Apsidal precession for small eccentricities $\Delta \Theta=2 \pi / \sqrt{n}$. We extend this result for arbitrary orbital parameters; we introduce a description in terms of an effective angular momentum and a Keplerian potential $\Phi_{\text {eff }}=-\rho / r$. We find an exact expression for the Apsidal precession. For $|n|<0.3$, we find $\Delta \Theta=2 \pi / n^{\alpha}$ and find expressions for the exponent α that are correct with 1%. We discuss possible applications to the orbits of stars in elliptical galaxies.${ }^{1}$ Supported by a grant from the Provost's Initiative for Undergraduate Research [CSU]
${ }^{2}$ corresponding author

