Abstract Submitted for the OSF15 Meeting of The American Physical Society

Time-resolved UV-IR Pump-stimulated Emission Pump Spectroscopy: Probing Collisional Relaxation of $8p^2P_{3/2}$ Cs I¹ MD SALAH UD-DIN, Miami University — We describe and use a time-resolved pump-stimulated emission pump spectroscopic technique to measure collisional relaxation in a highlying energy level of atomic cesium. Aligned $8p^2P_{3/2}$ cesium atoms were produced by a pump laser. A second laser, the stimulated emission pump, promoted the population exclusively to the $5d^2D_{5/2}$ level. The intensity of the $5d^2D_{5/2} \to 6s^2S_{1/2}$ cascade fluorescence at 852.12~nm was monitored. The linear polarization dependence of the $6s^2S_{1/2} \to 8p^2P_{3/2} \to 5d^2D_{5/2}$ transition was measured in the presence of argon gas at various pressures. From the measurement, we obtained the disalignment cross section value for the $8p^2P_{3/2}$ level due to collisions with ground-level argon atoms.

¹National Science Foundation (Grant No. NSF-PHY-1309571)

MD SALAH UDDIN Miami University

Date submitted: 27 Aug 2015 Electronic form version 1.4