Abstract Submitted for the OSF19 Meeting of The American Physical Society

Systematic Study of the Effect of Incorporation of Carbon Nanotubes into Ge_x Se_{1-x} Glass System f1¹ CHARI RAMKUMAR, JOHN RADEMACHER, MEHDI MILLOT, DAVID HELLMAN, JAKE ANDERSON, WAYNE BRESSER, Department of Physics, Geology and Engineering Technology, Northern Kentucky University — We successfully synthesized Ge_xSe_{1-x} (x = 0.225) glass samples and doped the samples with commercially produced (Protein Mods) carbon nanotubes (CNTs). We investigated the glass transition temperature (T_g) using Modulated Differential Scanning Calorimetry (MDSC). The glass samples without the CNTs have a a T_g of ~ 220 C and the T_g was found to be independent of starting materials from different suppliers as well as water-bath temperature (Fig. 1). CNTs, being a very hygroscopic material as well as oxygen absorbing material, needed to be cleaned under vacuum with the hot water-bath. We found that the $T_{\rm g}$ decreases when 5% and 10 % CNTs by mass is added to the glass samples as compared to the base Ge_xSe_{1-x} glass. The decrease in T_g indicates the occurrence of an intermediate phase (reduced-stress glass phase) at lower temperature, which could be potentially useful in material science applications.

¹Funded by 2019 NKU Greaves Undergraduate Research Fellowship and 2019 NKU CINSAM UR-STEM Program

Chari Ramkumar Dept of Physics, Geology and Engineering Tech, Northern Kentucky Univ

Date submitted: 26 Sep 2019 Electronic form version 1.4