Abstract Submitted for the OSF19 Meeting of The American Physical Society

Quantifying optical properties of hemozoin for the rapid detection of malaria¹ KYLE BLASINSKY, AMANDA MCGREER, John Carroll University, ROBERT DEISSLER, Case Western Reserve University, DANIELLE KARA, John Carroll University — Hemozoin, a byproduct of plasmodium, is the basis of a new approach for efficient, cost-effective malaria detection. Clinical success of malaria detection with a magneto-optical device (MOD) motivates quantification of the optical interactions forming the basis for this detection mechanism. MOD is used to measure the intensity of polarized light transmitted through a sample of hemozoin suspended in phosphate-buffered saline, subject to a magnetic field (\vec{B}) that can be turned on and off. According to Beers law, ratios of transmitted light with \vec{B} on and off as a function of hemozoin concentration are related to change in cross-sectional absorption $\Delta \sigma = \sigma_B$ on $-\sigma_B$ off. We tested several hemozoin concentrations, linearly fit intensity ratio versus concentration data, and accounted for thermal effects using a basis transformation to find $\sigma_{\parallel} - \sigma_{\perp} = 1.56 \pm 0.43 \text{cm}^3$ where $\sigma_{\parallel} (\sigma_{\perp})$ corresponds to polarization parallel (perpendicular) to \vec{B} . This result is comparable to other published work, and the quantification of $\sigma_{\parallel} - \sigma_{\perp}$ informs our understanding of the magneto-optical properties of hemozoin, which advances malaria detection.

¹John Carroll University Department of Physics

Kyle Blasinsky John Carroll University

Date submitted: 24 Sep 2019

Electronic form version 1.4