Abstract Submitted for the OSS05 Meeting of The American Physical Society

The Electrical Field Gradient at ^{181}Ta in $ZrSiO_4$ and $HfSiO_4$ SEAN MCBRIDE, HERBERT JAEGER, Miami University — We have used perturbed angular correlation spectroscopy (PAC) to measure the electric field gradient (EFG) at the Zr-site in zircon $(ZrSiO_4)$ between room temperature and $1100\,^{\circ}C$ using ^{181}Ta probe nuclei. The EFG is axially symmetric and the quadrupole interaction frequency ν_Q decreases linearly with increasing temperature. While for some zircon specimens the slope of the ν_Q vs. T increases above $900\,^{\circ}C$, for others this change in slope is not observed. This change in the thermal behavior ν_Q is consistent with a displacive structural transition reported in the literature. In order to learn more about this structure we have begun performing PAC experiments on isostructural hafnon $(HfSiO_4)$, which was synthesized in our laboratory. PAC spectra of hafnon are very similar to those of zircon but show a small second-site interaction due to residual HfO_2 from the sample preparation. The temperature dependence of the quadrupole interaction frequency will be discussed in context of a displacive phase transition in these materials.

¹Z. Mursic, T. Vogt, and F. Frey, Acta Cryst. **B48** (1992) 584.

Herbert Jaeger Miami University

Date submitted: 14 Mar 2005 Electronic form version 1.4