Dynamic Monte-Carlo Simulations of Diffusion in Polypropylenes: Possible Artifacts of Stereochemistry

ERNST VON MEERWALL, NUMAN WAHEED, WAYNE MATTICE, Univ. Akron — We previously reported coarse-grained lattice-based dynamic Monte-Carlo (MC) simulations in polypropylenes (PP), as well as pulsed-gradient diffusion (D) experiments at 180 deg. C., to study the effects of stereochemistry. We had obtained three PP specimens, with probabilities of a meso dyad $P_m = 0.02$ (syndiotactic, “sPP”, $M_n = 12,300$), 0.23 (atactic, “aPP”, $M_n = 5,300$), and 0.89 (isotactic, “sPP”, $M_n = 9,900$). New simulations copied the samples’ M_n and P_m, and for iPP the polydispersity $M_w/M_n = 1.24$. The conversion factor K between MC steps and real time must be derived from experiment. It was found that $K = 3300$ MCS/ps for both sPP and aPP, but falls to 1600 for monodisperse iPP, falling further to 800 if polydispersity is coarsely included. As the lack of any M-dependence of K had been verified in our earlier work with n-alkanes and polyethylenes (PE), its P_m-dependence must either originate in a systematic error of the PE-calibrated GPC M values, or else be an intrinsic feature of our MC method. New dilute D measurements, consistent with the Flory $M^{-0.5}$ dependence, point to the second possibility.

\[\text{1Supported in part by NSF (DMR-04-55117).}\]