Abstract Submitted for the OSS09 Meeting of The American Physical Society

Gas and Stellar kinematics of late type spiral NGC 2976 JAMES GALLAGHER, JASON PINKNEY, Ohio Northern University — We present imaging and spectroscopy from ground and space-based observations of NGC 2976. This Sc galaxy has a small bulge and close proximity (only 3.6 Mpc) making it ideal for our search for small nuclear black holes (BH). Pre-existing information do not show it to have an AGN: ROSAT X-ray data do not show a nuclear point source, and it emits no radio jets. We confirm that N2976 has an HII type nuclear spectrum, consistent with intense star formation. Keck spectra reveal a stellar velocity dispersion of only $\sigma = 18 - 20$ km s⁻¹. The gas velocity dispersion is also about 20 $km s^{-1}$. HST imaging reveals an unusual nuclear double peak whose dominance flips going from the medium band (F547M) image to the narrow band (H α) image. The emission line spectra do not show a regular rotation curve, despite an almost disk-like appearance of the extended H α emission. The M_{BH} – σ relation predicts a BH mass of only $5 \times 10^4 M_{\odot}$. The virial theorem applied to the central gas blob gives a considerably larger upper limit (~ $10^6 M_{\odot}$). This appears to be another "nucleus in formation", and may not have a supermassive BH at all, like M33.

> Jason Pinkney Ohio Northern University

Date submitted: 01 Apr 2009

Electronic form version 1.4