Abstract Submitted
for the OSS10 Meeting of The American Physical Society

Abstract

Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius DMITRI RABOUNSKI, LARISSA BORISSOVA - Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse ($g_{00}=0$) only if its mass and radius are close to those of the Universe ($\mathrm{M}=8.7 \times 10^{55} \mathrm{~g}$, $\mathrm{a}=1.3 \times 10^{28} \mathrm{~cm}$). However if the same mass is presented as a mass-point, the radius of collapse r_{g} (Hilbert radius) is many orders lesser: $\mathrm{g}_{00}=0$ realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: $\mathrm{a}=\mathrm{r}_{g}$, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein $\lambda=3 / \mathrm{a}^{2}>0$: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where $\rho_{0}<0$ and $\mathrm{p}=-\rho_{0} \mathrm{c}^{2}>0$ (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, $\lambda=3 / \mathrm{a}^{2}>0$); it is also calculated.

