Abstract Submitted for the OSS12 Meeting of The American Physical Society

Nuclear Scaling with Low Momentum Interactions¹ E.R. ANDER-SON, The Ohio State University — Nuclear scaling is observed in the ratios of inclusive electron scattering on different nuclei for $1.5 \le x_B \le 2.0$ at large momentum transfer Q^2 . The ratios depend on the nucleus but are independent of Q^2 , and have been understood to be a result of strong short-range correlations induced by the nucleon-nucleon interaction. Recent calculations of nuclear structure make use of the similarity renormalization group to soften the nuclear potential through a series of unitary transformations, which suppress these short range correlations.^{2,3} However, we can now understand and calculate this scaling ratio as an effect of low momentum nuclear structure via factorization of operator expectation values. Recent calculations in nuclear matter, and in a Hartree-Fock basis for finite nuclei will be presented. We also apply this framework to an observed correlation with the EMC effect.⁴

¹Supported in part by the NSF under Grants No. PHY-1002478 and the UNEDF SciDAC Collaboration under DOE Grant DE-FC02-09ER41586.

²E.D. Jurgenson, P. Navrátil, and R.J. Furnstahl, Phys. Rev. Lett. **103**, 082501 (2009).

 $^3\mathrm{E.~R.}$ Anderson, S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C $\mathbf{82},$ 054001 (2010)

⁴L. B. Weinstein *et al.*, Phys. Rev. Lett. **106**, 052301 (2011)

Eric Anderson The Ohio State University

Date submitted: 13 Mar 2012 Electronic form version 1.4