Abstract Submitted for the OSS13 Meeting of The American Physical Society

In the nucleus density gravitation is greater than electrostatic force YONGQUAN HAN, 13241375685 — Let's compare the density gravitation and electrostatic force between two protons. Temporarily, gravitational constant is believed to be accurate in the following discussion. Proton mass is about 1.67×10^{-27} kg, radius is about $r=1.0 \times 10^{-15}$ m H= 6.67×10^{-11} k= 9×10^9 Proton charge is $e=1.6 \times 10^{-19}$ coulomb Proton density is $p1=\frac{1.67 \times 10^{-27}}{\frac{4}{3}\pi r^3}=\frac{1.67 \times 10^{-27}}{4.1762 \times 10^{-45}}=$ $4X10^{17}$ kg/m³ F_d =H $\frac{p_1^2}{R^2}$ F_e = $K\frac{e^2}{R^2}$ Obviously F_d >> F_e, Tt is apparent that F_d is much greater than F_e.

> Han Yongquan 13241375685

Date submitted: 22 Feb 2013

Electronic form version 1.4