Abstract Submitted for the OSS13 Meeting of The American Physical Society

Two-Neutron Decay from the Ground State of 26O¹ HARSHA ATTANAYAKE, CARL BRUNE, DILUPAMA DIVARATNE, PAUL KING, Ohio University, MONA COLLABORATION² — Recent experiments have indicated that 24 O is bound and the tests have failed to find bound states of 25 O and 26 O. So to further understand the behavior and properties of neutron-rich heavy oxygen isotopes the study of ²⁶O is important. Unstable ²⁶O decays to stable ²⁴O by emitting two neutrons rather than decaying via ²⁵O, which has an unbound ground state energy of 770keV. An investigation of ²⁶O was conducted at the National Superconducting Cyclotron Laboratory, which possesses the capability to produce rare isotope beams and detect neutrons with an efficiency of about 70% with the MoNA detector. The reaction of interest being ${}^{26}O \rightarrow {}^{24}O + 2n$, production of ${}^{26}O$ was done by one-proton removal from a 27 F beam with an energy of 82 MeV/u impending on a 705 mg/cm² Be target. Coincidence of two neutrons with ^{24}O was measured for four-vector momentum event reconstruction. The analysis of this experiment will determine the invariant mass of 26 O and the status of the analysis will be presented.

¹Funded in part by the U.S. DOE, under grant no. DE-FG02-88ER40387. ²MoNA Collaboration at National Superconducting Cyclotron Laboratory (MSU)

> Harsha Attanayake Ohio University

Date submitted: 01 Mar 2013

Electronic form version 1.4