Abstract Submitted for the PSF13 Meeting of The American Physical Society

Spin-Orbit Interaction and Rashba Effect in the 2D metal dichalcogenides MOHAMMAD MAHDI VALIZADEH, SHANAVAS K. VEEDU, SASHI SATPATHY, Department of Physics, University of Missouri, Columbia, MO 65211 — The monolayer metal dichalcogenides such as MoS_2 and WS_2 are currently an emerging class of 2D materials owing to their possible applications in 2D electronics including spintronics. The Rashba effect which describes the momentum-dependent spin-splitting of the band structure originates from the spin-orbit interaction and inversion symmetry breaking. The effect is expected to be much stronger in the dichalcogenides with high-Z elements such as WS_2 , WO_2 , etc. Here, we study the Rashba effect in WS_2 from a tight-binding model as well as from density-functional calculations. We find a strong Rashba effect leading to the possibility of applications in spintronics such as spin-valves.

Mohammad Mahdi Valizadeh Department of Physics, University of Missouri, Columbia, MO 65211

Date submitted: 11 Oct 2013 Electronic form version 1.4