PSF13-2013-000078

Abstract for an Invited Paper for the PSF13 Meeting of the American Physical Society

${ m Tb}_2{ m Mo}_2{ m O}_7$: Spin glass, spin ice and possible candidate for magnetic monopoles exploration DEEPAK SINGH, University of Missouri, Columbia

The frustrated pyrochlore compound Tb₂Mo₂O₇ stands at an interesting crossroads, being a representative of both the Mo-based family R_2 Mo₂O₇ (R = rare earth) and other Tb-based compounds Tb₂X₂O₇ (X = metal). As a function of the R-site radius, R₂Mo₂O₇ compounds exhibit a metal-insulator transition between the ferromagnetic metal states and the spin glass insulators. Tb₂Mo₂O₇ exhibits the spin-glass behavior, $T_G \sim 24$ K, despite the apparent lack of chemical disorder. This compound crystallizes in a cubic space group in which both the Tb and Mo atoms form three-dimensional networks of corner-sharing tetrahedra. Thus, each magnetic ion resides on a highly frustrated pyrochlore lattice. Neutron scattering measurements on single crystal specimens of Tb₂Mo₂O₇ revealed the short-ranged spin arrangements resembling the "spin ice" structure with Tb moments slightly tilted off the local <111> -direction. Detailed analysis of a.c. and nonlinear susceptibilities suggest that Tb₂Mo₂O₇ is not sufficiently frozen below glass transition, rather finite spin dynamic scaling of the nonlinear susceptibilities. In addition to the spin ice configuration and a nonconventional spin glass transition, Tb₂Mo₂O₇ provides a new frontier to extend this noble quest.