PSF13-2013-000108

Abstract for an Invited Paper for the PSF13 Meeting of the American Physical Society

Magnetism in iron-based high-temperature superconductors and its effect on lattice and superconductivity¹

ANDREAS KREYSSIG, Ames Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, IA

Shortly after the discovery of iron-based high-temperature superconductors in 2008, extensive studies using neutron and x-ray scattering techniques have revealed a strong interconnection of magnetism, lattice and superconductivity. In this presentation I will give an overview of the complex interplay between these phenomena and will bring it into context with other unusual superconductors. I will illustrate the phase relations exemplarily on the family of AFe_2As_2 -based material (A = Ba, Sr, Ca) where a stripe-like antiferromagnetic order is coupled to a lattice distortion implying a strong coupling between magnetism and structure. Partial chemical element substitution suppresses these transitions and superconductivity occurs.

The study was performed in collaboration with M. G. Kim^{*}, G. S. Tucker^{*}, D. K. Pratt^{*}, S. Nandi^{*}, W. Tian[#], J. Zarestky^{*}, J.-W. Kim⁺, G. E. Granroth^{*}, K. Marty[#], M. D. Lumsden[#], T. Heitmann⁼, A. Thaler^{*}, N. Ni^{*}, S. L. Bud'ko^{*}, P. C. Canfield^{*}, R. M. Fernandes^{*}, J. Schmalian^{*}, R. J. McQueeney^{*}, and A. I. Goldman^{*}; *Ames Laboratory, and Iowa State University; ⁺APS, Argonne; [#]HFIR, Oak Ridge; ⁼MURR, University of Missouri.

¹The work at the Ames Laboratory was supported by US DOE, BES, DMSE, through contract DE-AC02-07CH11358.