A Measurement of the Nuclear Levels in 19Ne using GODDESS
MATTHEW HALL, University of Notre Dame, ATLAS EXPERIMENT 1488 COLLABORATION

A direct way to test nova explosion models is to observe gamma rays created in the decay of radioactive isotopes produced in the nova. One such isotope, 18F, is believed to be the main source of observable 511-keV gamma rays. The main destruction mechanism of 18F is thought to be the 18F$(p,\alpha)^{15}$O reaction, and the uncertainty in the reaction rate is attributed to uncertainties in the energies, spins, and parities of the nuclear levels in 19Ne above the proton threshold. A 3He beam was used at Argonne National Lab in an effort to understand the levels in 19Ne via the 19F$(^3$He,t)19Ne reaction. Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) was used to measure gamma rays from the decay of 19Ne in coincidence with the reaction tritons. Preliminary data from the experiment will be presented. This research was supported by the National Science Foundation, the US DOE Office of Nuclear Physics and the National Nuclear Security Administration.

Matthew Hall
University of Notre Dame

Date submitted: 15 Oct 2015
Electronic form version 1.4