Studying a Potential Calibration Reaction for NIF

B. VANDE KOLK, R.J. DEBOER, E. STECH, M. WIESCHER, University of Notre Dame

— Measurements have been made for the reaction $^{10}\text{B}(\text{p},\gamma)^{11}\text{C}$. Investigating this is the first step in utilizing the reaction $^{10}\text{B}(\text{p},\alpha)^{7}\text{Be}$ as a potential calibration for the National Ignition Facility (NIF). NIF is able to create conditions within the same temperature range that exist during hydrogen burning in a star, a process by which nucleosynthesis occurs. Be-7 has a half-life of 53.2 days, long enough to gather and study before it decays but short enough to have decayed in several months, which makes its reaction a suitable candidate for calibration. There is a 10 keV resonance that dominates the low energy cross section of both $^{10}\text{B}(\text{p},\alpha)^{7}\text{Be}$ and the ground state $^{10}\text{B}(\text{p},\gamma)^{11}\text{C}$. In addition, a higher energy resonance at 600 keV is shared by both reactions. The two resonances interfere, as they have the same spin-parity 5/2+, and their levels are not constrained enough by data to allow for reliable extrapolation to the lower energies that correspond to the temperature range of NIF. The measurement of $^{10}\text{B}(\text{p},\gamma)^{11}\text{C}$ is sensitive to the gamma partial width as well as the alpha width of these levels and will better determine these resonances, allowing for more confident extrapolation.